

Journal of Organometallic Chemistry 528 (1997) 135-141

Icosahedral palladium metallocarboranes with thiophene substituents: unexpected cage substitution products from the reaction of $Pd(PMe_2Ph)_2Cl_2$ with $Tl_2[7-(RC_4H_2S)-7,8-nido-C_2B_9H_{10}](R = Me \text{ or } H)^{-1}$

Despo M. Michaelidou, D. Michael P. Mingos *, David J. Williams, Andrew J.P. White

Department of Chemistry, Imperial College of Science, Technology and Medicine, South Kensington, London SW7 2AY, UK

Received 8 May 1996; accepted 28 May 1996

Abstract

 $Pd(PMe_2Ph)_2Cl_2$ with $Tl_2[7-(C_4H_2RS)-7,8$ -*nido*- $C_2B_9H_{10}]$ (R = H or Me) gives $1-C_4H_2RS-3,3-(PMe_2Ph)_2-3,1,2$ -Pd- $C_2B_9H_{10}]$ as the major and $[1-C_4H_2RS-3,3-(PMe_2Ph)_2-8-(PMe_2Ph)-3,1,2$ -Pd- $C_2B_9H_9][C_4H_2RS-C_2B_9H_{12}]$ as the minor product. The crystal structures of the major (R = Me) and minor products (R = H) show that both have icosahedral metallocarborane cages, but that the latter has one of the hydrogen atoms on the pentagonal face of the ligand adjacent to the metal replaced by PMe_2Ph .

Keywords: Metalloboranes; Palladium metalloboranes; Carboranes; Thiophene substituted metalloboranes

1. Introduction

As part of a more general study of the effect of bulky substituents on the rearrangements of metallocarboranes, some thiophene-substituted metallocarboranes of palladium and platinum were synthesised and characterised. Phenyl-substituted platinacarbaboranes, for example 1-Ph-3,3-(PMe₂Ph)₂-3,1,2-Pt($C_2B_9H_{10}$) and the disubstituted compound 1,11-Ph₂-3,3-(PMe₂Ph)₂-3,1,11-Pt(C₂B₉H₉) [1], have been previously synthesised and their skeletal rearrangements investigated. The related palladium compounds 1-Ph-3-(cod)-3,1,2- $Pd(C_2B_9H_{10})$ and $Pd(cod)-\eta^{5}-7,8-Me_{2}-7,8-C_{2}B_{\alpha}H_{\alpha}$ have also been reported by other workers [2,3]. These studies established that steric effects play an important role in influencing the rearrangement barriers in these metallocarboranes. This paper describes the products from the reaction of $Pd(PMe_2Ph)_2Cl_2$ with $Tl_2[7 (RC_4H_5)-7,8$ -*nido*- $C_5B_9H_{10}$] (R = Me or H).

2. Experimental details

2.1. Synthesis and characterisation

Reactions were generally performed under N_2 by use of standard Schlenk techniques, although some subsequent manipulations were carried out in the open laboratory. All solvents were dried and distilled under N_2 prior to use. The NMR spectra were recorded on a Jeol JNM-EX270 FT spectrometer. ¹H, ¹¹B{¹H} and ³¹P{¹H} chemical shifts were referenced to tetramethylsilane, BF₃ · OEt₂ and H₃PO₄ respectively. Electron impact (EI) mass spectra were recorded on a VG Micromass 7070B and fast atom bombardment (FAB) mass spectra were recorded on a VG AutoSpecQ mass spectrometer using 3-nitrobenzyl alcohol matrix.

Microanalyses were performed by the departmental service. Preparative thin layer chromatography was performed using silica-coated (thickness 0.2 mm) $20 \times 20 \text{ cm}^2$ glass plates (Merck).

2.1.1. $[1-(MeC_4H_2S)-closo-1,2-C_2B_{10}H_{11}]$ 1

A solution of $B_{10}H_{14}$ (1.92 g, 16.0 mmol) in a mixture of acetonitrile (3 ml) and toluene (15 ml) was refluxed for 2 h. A solution of freshly-prepared 2-ethynyl-5-methylthiophene (2 g, 16.3 mmol) [4] in toluene (5 ml)

^{*} Corresponding author.

¹ Dedicated to Professor Malcolm Green FRS on the occasion of his 60th birthday, by Despo Michaelidou who learned much from him during her D.Phil.

⁰⁰²²⁻³²⁸X/97/\$17.00 © 1997 Elsevier Science S.A. All rights reserved. PII \$0022-328X(96)06530-8

was then added dropwise to the refluxing mixture. The resulting orange-brown mixture was refluxed for a further 21 h, after which time the solvents were removed under reduced pressure at room temperature. To the solid, MeOH (20 ml) was added and this was removed after stirring for a brief period. To the resulting brown tar, hexane was added (150 ml) and the extract was collected. The extraction was repeated twice with hexane (50 ml). The extracts were combined and the solvent was removed under reduced pressure. The crude product was sublimed at 140 °C under vacuum (1 mm Hg) to yield [1-(MeC₄H₂S)-*closo*-1,2-C₂B₁₀H₁₁] **1**, as a pure white powder. Yield 1.3 g, 34%. Calculated for C₇H₁₆B₁₀S: 35.0% C, 6.7% H. Found for **1**: 34.9% C, 6.4% H.

NMR. ¹H (CDCl₃): 6.97 (d, 1 H, MeC₄ H_2 S), 6.54 (d, 1 H, MeC₄ H_2 S), 3.78 (s, 1 H, cage C-H), 2.40 [s, 3 H, MeC_4H_2 S]. ¹¹B{¹H}(CDCl₃): -1.8 (1 B), -5.2(1 B), -9.9 (4 B), -11.6 (2 B), -12.9 (2 B). Mass spectrum (EI): m/z 240 M⁺.

2.1.2. $[7-(MeC_4H_2S)-nido-7, 8-C_2B_9H_{11}][Me_3NH]$ 2

A solution of KOH (1.06 g, 30 mmol) in dried methanol (20 ml) was added under N₂ to a flask containing $[1-(MeC_4H_2S)-closo-1,2-C_2B_{10}H_{11}]$ (1.22 g, 5.1 mmol). The resultant solution was refluxed under N_2 at 80°C for 23 h. The solvent was removed under reduced pressure, the residue was redissolved in ethanol (70 ml) and a stream of CO₂ (from 50 g of dry ice) was passed through the solution. The precipitated K_2CO_3 was filtered off and washed with ice-cold ethanol. The combined filtrate and washings were evaporated to dryness under reduced pressure and the residue was dissolved in distilled water, filtered through Celite (1 cm) and was then treated with an aqueous solution of [Me₃NH]Cl (1.5 g, 15.7 mmol). The mixture was cooled to 0°C when a white-cream precipitate was formed which was isolated by filtration and dried in vacuum. This was shown to be $[7-(MeC_4H_2S)-nido-7,8 C_2B_9H_{11}$ [Me₃NH] by NMR spectroscopy and mass spectrometry. Yield 1.0 g, 64%. Calculated for C₁₀H₂₆B₉NS: 41.5% C, 9.0% H, 4.8% N. Found for 2: 41.5% C, 8.8% H, 4.8% N.

NMR. ¹¹B{¹H}(CD₃COCD₃): -8.5 (1 B), -9.7 (1 B), -12.7 (1 B), -17.4 (3 B), -22.4 (1 B), -32.2 (1 B), -35.1 (1 B). Mass spectrum (negative FAB): m/z 229 M⁻.

2.1.3. $Tl_2[7-(MeC_4H_2S)-nido-7, 8-C_2B_9H_{10}]$ 3

 $[7-(MeC_4H_2S)-nido-7,8-C_2B_{10}H_{11}][Me_3NH]$ (0.993 g, 3.43 mmol) was dissolved in a solution of KOH (0.385 g, 6.87 mmol) in H₂O (12 ml). An aqueous solution of thallium(I) acetate (1.81 g, 6.87 mmol in 10 ml of H₂O) was added dropwise under N₂ causing immediate formation of a yellow precipitate. The solid was isolated by filtration, washed with water, ethanol and hexane and dried under vacuum. It was shown to be $Tl_2[7-(MeC_4H_2S)-nido-7,8-C_2B_9H_{10}]$ by elemental analysis. Yield 2.2 g, 99%. Calculated for $C_7H_{15}B_9STl_2$: 13.2 C%, 2.35 H%. Found for **3**: 13.1 C%, 2.1 H%.

2.1.4. $Tl_2[7-(C_4H_3S)-nido-7, 8-C_2B_9H_{10}]$ 4

[7-(C₄H₃S)-*nido*-7,8-C₂B₉H₁₁][Me₃NH] (1.19 g, 4.3 mmol) [5] was dissolved in a solution of KOH (0.48 g, 8.67 mmol) in H₂O (12 ml). An aqueous solution of thallium(I) acetate (2.28 g, 8.6 mmol in 10 ml of H₂O) was added dropwise under N₂, causing immediate formation of a yellow precipitate. The solid was isolated by filtration, washed with water, ethanol and hexane and dried under vacuum. It was shown to be Tl₂[7-(C₄H₃S)-*nido*-7,8-C₂B₉H₁₀] by elemental analysis. Yield 2.7 g, 99%. Calculated for C₇H₁₅B₉STl₂: 11.6 C%, 2.1 H%. Found for 4: 12.0 C%, 1.8 H%.

2.1.5. $1-C_4H_3S-3,3-(PMe_2Ph)_2-3,1,2-Pd-C_2B_9H_{10}$ 5 and $[1-C_4H_3S-8-PMe_2Ph-3,3-(PMe_2Ph)_2-3,1,2-Pd-C_2B_9H_9]$ [7- C_4H_3S -nido-7,8- $C_2B_9H_{11}$] 6

To a dry mixture of $Tl_2[7-C_4H_3S-nido-7, 8-C_2B_9H_{10}]$ (0.360 g, 0.57 mmol) and $[PdCl_2(PMe_2Ph)_2]$ (0.262 g, 0.57 mmol) thf (30 ml) was added at -78 °C. The reaction mixture was allowed to warm up to room temperature and was further stirred for 1.5 h. The resulting deep purple solution was filtered from a grey precipitate. Preparative TLC (CH_2Cl_2 :hexane, 1:1, and then 9:1) gave three bands, a major purple band and two minor, one orange (Rf = 0.1) and one green (Rf = 0.03). The compound $1-C_4H_3S-3.3-(PMe_2Ph)_2-3.1.2-Pd C_2B_9H_{10}$ was isolated from the purple band and orange crystals of $[1-C_4H_3S-8-PMe_2Ph-3,3-(PMe_2Ph)_2-3,1,2 Pd-C_2B_9H_9$] [7-C₄H₃S-nido-7,8-C₂B₉H₁₁] from the second. Yield 0.07 g, 20%. Calculated for C₂₂H₃₅B₉P₂PdS: 44.2 C%, 5.9 H%. Found for 5: 44.3 C%, 5.6 H%.

NMR. ¹H (CDCl₃): 7.41–7.16 (m, 10 H, 2PMe₂*Ph*), 7.06 [dd, 1 H, *J*(H–H) 5.1, *J*(H–H) 1.3, C₄*H*₃S], 7.0 [dd, 1 H, *J*(H–H) 3.6, *J*(H–H) 1.3, C₄*H*₃S], 6.89 (dd, 1 H, *J*(H–H) 5.3, *J*(H–H) 3.6, C₄*H*₃S), 3.21 (s, 1 H, cage C–H), 1.48 [d, 6 H, *J*(H–³¹P) 10.2, 2PMe₂Ph], 1.30 [d, 6 H, *J*(H–³¹P) 9.9, 2PMe₂Ph]; ¹H (CD₂Cl₂): 7.45–7.16 (m, 10 H, 2PMe₂*Ph*), 7.10 [dd, 1 H, *J*(H–H) 5.1, *J*(H–H) 1.3, C₄*H*₃S], 6.99 [dd, 1 H, *J*(H–H) 3.6, *J*(H–H) 1.3, C₄*H*₃S], 6.91 [dd, 1 H, *J*(H–H) 5.3, *J*(H–H) 3.6, C₄*H*₃S], 3.18 (s, 1 H, cage C–H), 1.47 [d, 6 H, *J*(H–³¹P) 10.2, 2PMe₂Ph], 1.31 [d, 6 H, *J*(H–³¹P) 10.2, 2PMe₂Ph]. ¹¹B{¹H} (CD₂Cl₂): 9.0, -2.7, -6.2, -8.9, -14.5, -17.0. ¹¹B: doublets *J* = 125–154Hz, ³¹P{¹H} (CD₂Cl₂): -3.2 (vbs). Mass spectrum (FAB): *m/z* 597 cation.

NMR for 6. ¹H (CD₂Cl₂): 6.8–7.8 (multiplets, 3 Ph and 2C₄H₃S), 3.24 (s, 1 H, cage C–H), 1.89 [d, 6 H, $J(H^{-31}P)$ 11.5, PMe_2Ph], 1.52 [d, 3 H, $J(H^{-31}P)$ 9.9,

PM e_2 Ph], 1.23 [d, 3 H, $J(H^{-31}P)$ 10.2, PMe_2 Ph], 1.18 [d, 3 H, $J(H^{-31}P)$ 9.9, PMe_2 Ph], 0.73 [d, 3 H, $J(H^{-31}P)$ 10.2, PMe_2 Ph]. ¹¹B{¹H} (CD₂Cl₂): 6.6 [d, $J(^{11}B^{-31}P)$ 143], -4.8, -7.5, -9.2, -10.6, -13.2, -17.8, -23.0, -32.9, -35.9. ³¹P{¹H} (CD₂Cl₂): 2.2 (d, J 62), -6.5 (d, J 63), -7.8 [quartet, $J(^{31}P^{-11}B)$ 142]. Mass spectrum (positive ion FAB) 734 M⁺.

2.1.6. $1-MeC_4H_2S-3,3-(PMe_2Ph)_2-3,1,2-Pd-C_2B_9H_{10}$ 7 and $[1-MeC_4H_2S-8-PMe_2Ph-3,3-(PMe_2Ph)_2-3,1,2-Pd-C_2B_9H_9]$ [7-MeC_4H_2S-nido-7,8-C_2B_9H_1] 8

To a dry mixture of $Tl_2[7-MeC_4H_2S-nido-7,8-C_2B_9H_{10}]$ (0.349 g, 0.55 mmol) and $[PdCl_2(PMe_2Ph)_2]$ (0.247 g, 0.55 mmol) CH_2Cl_2 (30 ml) was added at -78 °C. The reaction mixture was allowed to warm to room temperature and was stirred further for 1.5 h. The resulting deep red solution was filtered from a grey precipitate. Preparative TLC (CH_2Cl_2 :hexane, 1:1, and then 9:1) gave three bands, a major purple band (Rf = 0.8) and two minor, one orange (Rf = 0.27) and one green (Rf = 0.11). The compound 1-MeC_4H_2S-3,3-(PMe_2Ph)_2-3,1,2-Pd-C_2B_9H_{10} was isolated from the purple band. Yield: 0.063 g, 19%. Calculated for $C_{23}H_{37}B_9P_2PdS$: 45.2 C%, 6.1 H%. Found for 7: 45.0 C%, 5.6 H%.

¹H (CD₂Cl₂): 7.18–7.46, (m, 10 H, 2PMe₂*Ph*), 6.77 [d, 1 H, *J*(H–H) 3.62], 6.56 (m, 1 H), 3.20 (s, 1 H, cage C–*H*), 2.46 (s, 3 H, *MeC*₄H₂S), 1.48 [d, 6 H, *J*(H–³¹P) 9.9, 2P*Me*₂Ph], 1.32 [d, 6 H, *J*(H–³¹P) 10.2, 2P*Me*₂Ph], ¹¹B{¹H} (CD₂Cl₂): 9.1, -3.4, -6.4, -9.1, -15.1, -17.0. ¹¹B: doublets J = 122-149 Hz. ³¹P{¹H} (CD₂Cl₂): -3.2 (vbs). Mass spectrum (FAB): *m/z* 610 M⁺.

NMR for **8**. ¹H (CD₂Cl₂): 6.5–7.5 (multiplets, 3 Ph and 2C₄H₃S), 3.52 (s, 1 H, cage C–H), 2.43 (s, 3 H, MeC_4H_2S), 2.30 (s, 3 H, MeC_4H_2S) 1.86 [d, 6 H, $J(H^{-31}P)$ 11.9, PMe_2Ph], 1.53 [d, 3 H, $J(H^{-31}P)$ 10.6, PMe_2Ph], 1.23 [d, 3 H, $J(H^{-31}P)$ 5.9, PMe_2Ph], 1.19 [d, 3 H, $J(H^{-31}P)$ 5.9, PMe_2Ph], 0.80 [d, 3 H, $J(H^{-31}P)$ 10.6, PMe_2Ph], ¹¹B{¹H} (CD₂Cl₂): 6.4 [d, $J(^{11}B^{-31}P)$ 143], -5.0, -8.0, -9.4, -10.7, -13.4, -18.1, -23.1, -33.0, -36.0. ¹¹B: doublets J = 108-155 Hz. ³¹P{¹H} (CD₂Cl₂): 0.6 (d, J 66), -6.9 (d, J 68), -7.8 [quartet, $J(^{31}P^{-11}B)$ 142]. Mass spectrum (positive ion FAB): m/z 747 cation; (negative ion FAB): m/z 230 anion.

2.2. Crystallographic studies

2.2.1. Crystal structure determinations for 6

2.2.1.1. Crystal data for complex **6**. $C_{30}H_{45}B_9P_3SPd \\ C_6H_{13}B_9S, M = 948.8, orthorhombic, space group$ *Pbca* $, <math>a = 16.127(6), b = 18.557(2), c = 32.751(5) Å, V = 9801(4) Å^3, Z = 8, D_c = 1.29 g cm^{-3}, \mu(Mo K \alpha)$

= 5.9 cm⁻¹, F(000) = 3896. A thin orange-red plate of dimensions $0.67 \times 0.57 \times 0.03 \text{ mm}^3$ was used.

2.2.1.2. Data collection and processing. Data were measured on a Siemens P4/PC diffractometer with MoK α radiation (graphite monochromator) using ω -scans. 6391 independent reflections were measured $(2\theta \le 50^\circ)$ of which 4068 had $|F_o| > 4\sigma(|F_o|)$ and were considered to be observed. The data were corrected for Lorentz and polarisation factors, and a semi-empirical absorption correction (based on ψ -scans) was applied; the maximum and minimum transmission factors were 0.827 and 0.741 respectively.

2.2.1.3. Structure analysis and refinement. The structure was solved by direct methods. All the major occupancy non-hydrogen atoms were refined anisotropically, the phenyl rings being treated as optimised rigid bodies. There was found to be disorder in: (i) the thiophene ring of the coordinated boron cage (65:35); (ii) the phenyl ring of the carborane-bound dimethylphenylphosphine (75:25); (iii) the boron cage of the non-coordinated thiophene-substituted carborane (60:40). In each case, two partial occupancy orientations were identified. The positions of the hydrogen atoms were idealised, assigned isotropic thermal parameters, [U(H) = $1.2U_{eo}(C/B)$; $U(H) = 1.5U_{eo}(C-Me)$], and allowed to ride on their parent atoms. Refinement was by full matrix least squares based on F^2 to give $R_1 = 0.060$, $wR_2 = 0.134$ for the observed data and 568 parameters. The maximum and minimum residual electron densities in the final ΔF map were 0.68 e Å⁻³ and -0.37 e Å⁻³ respectively. The mean and maximum shift/error ratios in the final refinement cycle were 0.003 and -0.051respectively.

2.2.2. Crystal structure determinations for 7

2.2.2.1. Crystal data for complex 7. $C_{23}H_{37}B_9P_2SPd$, M = 611.2, monoclinic, space group $P2_1/n$, a = 15.180(6), b = 10.283(4), c = 19.564(7) Å, $\beta = 105.05(3)^\circ$, V = 2949(2) Å³, Z = 4, $D_c = 1.38$ g cm⁻³, $\mu(Cu K \alpha) = 68.4$ cm⁻¹, F(000) = 1248. A deep-red block of dimensions $0.24 \times 0.13 \times 0.03$ mm³ was used.

2.2.2.2. Data collection and processing. Data were measured on a Siemens P4/PC diffractometer with CuK α radiation (graphite monochromator) using ω scans. 4379 independent reflections were measured ($2\theta \le 120^\circ$) of which 3390 had $|F_o| > 4\sigma(|F_o|)$ and were considered to be observed. The data were corrected for Lorentz and polarisation factors, and a Gaussian absorption correction (face-indexed numerical) was applied; the maximum and minimum transmission factors were 0.797 and 0.421 respectively. 2.2.2.3. Structure analysis and refinement. The structure was solved by direct methods. All the non-hydrogen atoms were refined anisotropically, the phenyl rings being treated as optimised rigid bodies. The positions of the hydrogen atoms were located from subsequent ΔF maps, idealised, assigned isotropic thermal parameters, $[U(H) = 1.2U_{eq}(C/B); U(H) = 1.5U_{eq}(C-Me)]$, and allowed to ride on their parent atoms. Refinement was by full matrix least squares based on F^2 to give $R_1 = 0.055$, $wR_2 = 0.129$ for the observed data and 298 parameters. The maximum and minimum residual electron densities in the final ΔF map were $0.89 \text{ e} \text{ Å}^{-3}$ and $-1.11 \text{ e} \text{ Å}^{-3}$ respectively. The mean and maximum shift/error ratios in the final refinement cycle were 0.000 and -0.002 respectively.

For both structures, computations were carried out on 50 MHz 486 PC computers using the SHELXTL PC Program system [6]. Additional material available from the Cambridge Crystallographic Data Centre comprises fractional atomic coordinates, H-atom coordinates, thermal parameters and remaining bond lengths and angles.

3. Results and discussion

3.1. Synthesis and characterization

The salt $[Me_3NH]$ [7-(C₄H₃S)-*nido*-7,8-C₂B₉H₁₁] was converted into $Tl_2[7-(C_4H_3S)-nido-7.8-C_2B_9H_{10}]$ by a well established method [7] and characterised by NMR and analyses. The reaction of $Tl_2[7-(C_4H_3S)$ $nido-7, 8-C, B_{9}H_{10}$] and [PdCl₂(PMe₂Ph)₂] gave the expected icosahedral metallocarborane product 1-C₄H₃S- $3.3-(PMe_2Ph)_2-3.1.2-Pd-C_2B_9H_{10}$ 5 in 20% yield after a TLC purification stage. Two other bands (orange and green) were separated on the TLC plates, and of these. the orange one was isolable and identified as $[1-C_4H_3S 8-PMe_{2}Ph-3_{3}-(PMe_{2}Ph)_{2}-3_{1},2-Pd-C_{2}B_{0}H_{0}$ [7- C_4H_3S -nido-7,8- $C_2B_9H_{11}$] 6 in very low yield (less than 2%). The spectroscopic data discussed below has shown that this compound also has a related icosahedral metallocarborane cage, but with one of the hydrogen substituents replaced by a phosphine.

Compound **5** was characterised by ¹H, ¹¹B, ³¹P{¹H} NMR studies, mass spectral and elemental analyses. In the ¹H NMR spectrum of **5** the phenyl protons appear as a multiplet between 7.45 and 7.16 ppm. In the ¹H NMR spectrum the thiophene protons appear as three distinguishable doublets of doublets at 7.10, 6.99 and 6.91 ppm and the cage CH proton resonates at 3.18 ppm. Two doublets appear in the methyl region at 1.47 and 1.31 ppm which are assigned to the Me groups of the phosphine ligands. In the ¹¹B{¹H} NMR spectrum there are six peaks. All resonances show the expected doublet coupling (¹J_{BH} = 120–150 Hz) in the ¹¹B NMR spectrum. The low field signal in the ¹¹B{¹H} is assigned to the boron atom β to the carbons of the ligating CCBBB ring. This deshielding is considered diagnostic for structures in which there is a degree of distortion resulting from 'slippage' of the metal centre across the pentagonal C₂B₃ face away from the two atoms and towards the β boron atom [3]. The ³¹P{¹H} NMR spectrum showed a single very broad signal, and the FAB mass spectrum showed a highest mass peak corresponding to M⁺ at 597.

Compound 6 was also characterised by NMR spectroscopy, FAB mass spectrometry and a single crystal X-ray structural analysis. The 1 H NMR spectrum of 6 in CD₂Cl₂ NMR shows several multiplets assigned to the phenyl and thiophene protons between $\delta = 6.8$ and 7.8 ppm. In the aliphatic region, five doublets are seen in the ratio 2:1:1:1:1, indicative of three PPhMe₂ groups in total. The ³¹P{¹H} NMR spectrum shows two doublets ($\delta = 2.2$, J = 62 Hz; $\delta = -6.5$, J = 63 Hz) and one quartet ($\delta = -7.8$, J = 142 Hz), which are assigned to two P atoms coupling to each other in the PhMe₂P-Pd-PMe₂Ph moiety, and one P coupled to an ¹¹B nucleus (spin = 3/2). This assignment was confirmed by the crystal structure described below. The ¹¹B{¹H} NMR spectrum shows at least ten distinct peaks, which were not sufficiently well resolved for accurate integration. A distinct doublet (J = 143 Hz)was observed at 6.6 ppm. In the coupled spectrum, all the peaks except that doublet were split into doublets, thus indicating B–H groups, while the 6.6 ppm doublet not bearing an H is assigned as the B-P boron. The

Fig. 1. The molecular structure of the cation in the salt 6, $[1-C_4H_3S-8-PMe_2Ph-3,3-(PMe_2Ph)_2-3,1,2-Pd-C_2B_9H_9]$ [7-C₄H₃S-*nido*-7,8-C₂B₉H₁₁]. For reasons of clarity the hydrogen atoms have been omitted.

Table 1								
Salactad	hand	langthe	(Å)	and	onglas	(dag)	for	6

	1 4((2)	<u>C(1)</u> C(2)	1.520(11)	
C(1)-C(13)	1.46(2)	C(1)-C(2)	1.520(11)	
C(1)-B(4)	1.777(12)	C(1)-Pd(3)	2.562(7)	
C(2)-B(7)	1.730(12)	C(2) - Pd(3)	2.506(7)	
Pd(3)-B(7)	2.270(9)	Pd(3)-B(4)	2.290(9)	
Pd(3)-B(8)	2.298(9)	Pd(3) - P(27)	2.299(2)	
Pd(3)-P(36)	2.305(2)	B(4)-B(8)	1.791(14)	
B(7) - B(8)	1.776(13)	B(8)-P(18)	1.927(10)	
C(2)-C(1)-B(4)	109.1(6)	C(1)-C(2)-B(7)	113.2(6)	
B(7) - Pd(3) - P(27)	92.2(3)	B(4) - Pd(3) - P(27)	166.4(3)	
B(8) - Pd(3) - P(27)	127.2(3)	B(7) - Pd(3) - P(36)	168.3(2)	
B(4)-Pd(3)-P(36)	98.2(3)	B(8) - Pd(3) - P(36)	122.9(2)	
P(27) - Pd(3) - P(36)	95.00(7)	P(27) - Pd(3) - C(2)	99.2(2)	
P(36) - Pd(3) - C(2)	144.5(2)	P(27) - Pd(3) - C(1)	128.0(2)	
P(36) - Pd(3) - C(1)	113.7(2)	C(1)-B(4)-B(8)	107.0(7)	
C(2)-B(7)-B(8)	107.0(7)	B(7)-B(8)-B(4)	102.6(7)	

compound showed no EI mass spectrum, but a positive FAB mass spectrum was obtained and shows a highest mass peak at 734, $\equiv [1-C_4H_3S-8-PMe_2Ph-3,3-(PMe_2Ph)_2-3,1,2-Pd-C_2B_9H_9]^+$.

The crystal structure of 6 is illustrated in Fig. 1, and Table 1 lists selected bond lengths and angles. The compound is a salt [1-C₄H₃S-8-PMe₂Ph-3,3- $(PMe_2Ph)_2 - 3, 1, 2 - Pd - C_2B_9H_9$ [7-C₄H₃S-*nido*-7, 8- $C_2B_9H_{11}$]. The cation $[1-C_4H_3S-8-PMe_2Ph-3,3 (PMe_2Ph)_2$ -3,1,2-Pd-C₂B₉H₉]⁺ has a *closo*-icosahedral palladacarborane cage with the carbon atoms of the cage part of the face which is bonded to the metal atom. The cation is unusual since it has a PPhMe, group attached to one of the atoms of the coordinated face of the boron cage. The presence of such a grouping was indicated by the ¹¹B and ³¹P NMR spectroscopic data discussed above. This PPhMe₂ group is positioned on a site two removed from the thiophene substituent; this is probably due to steric factors. In the cation the thiophene ring adopts two orientations of 65% and 35% relative occupancy which are related to each other by an approximate 180° rotation about the C(1)–C(13) bond. There is also disorder (60:40) in the uncoordinated anion $[7-C_4H_3S$ -nido-7,8- $C_2B_9H_{11}]^-$ which takes the form of an approximate 100° rotation about a vector virtually coincident with the C (cage)-C(thiophene) bond. This disorder precludes detailed discussion of the bond lengths of the cages and of the thiophene substituents. In the cation the Pd atom attached to the nidocage exhibits a slip factor of $\Delta = 0.31$ Å, a value very similar to that observed (0.33 Å) in the neutral compound [1-MeC₄H, S-3,3-(PMe, Ph), -3,1,2-Pd- $C_2 B_9 H_{10}$] discussed below.

It was not possible to obtain suitable crystals for a structural analysis of the main product 5. Therefore, a similar sequence of reactions to that described above was repeated using the Me-substituted thiophene. The synthetic details for the preparation of the methyl substi-

tuted derivatives 7 and 8 are described in Section 2.1.6. Three bands were also observed on the separation of the reaction mixture on the TLC plates. The purple (major) band and orange (low yield) band were isolated to yield 7 and 8 respectively; these were found to be analogous to 5 and 6 above on the basis of spectroscopic data. Compound 7 was suitable for a single-crystal structural determination.

The crystal structure of 7 is shown in Fig. 2, and Table 2 lists selected bond lengths and angles. The compound 7. $[1-MeC_4H_2S-3,3-(PMe_2Ph)_2-3,1,2-Pd-C_2B_9H_{10}]$, has a structure based on a distorted closoicosahedral palladacarborane cage. The Pd(PMe_2Ph)_2 fragment is bonded to the C_2B_3 face of the cage. In common with the majority of L_2MC_2B_9H_{11} cage com-

Fig. 2. The molecular structure of 7, $[1-MeC_4H_2S-3,3-(PMe_2Ph)_2-3,1,2-Pd-C_2B_9H_{10}]$. For reasons of clarity the hydrogen atoms have been omitted.

Table 2		
Selected bond length	vs (Å) and angles	(deg) for 7

Selected bond lengths (A) and	angles (deg/ 101 7			
C(1)-C(13)	1.478(10)	C(1)-C(2)	1.536(10)	
C(1)B(4)	1.764(11)	C(1) - Pd(3)	2.634(7)	
C(2)-B(7)	1.746(11)	C(2)-Pd(3)	2.461(7)	
Pd(3)-B(7)	2.277(9)	Pd(3)-B(8)	2.282(8)	
Pd(3)-P(19)	2.293(2)	Pd(3) - P(28)	2.302(2)	
Pd(3)-B(4)	2.303(8)	B(4)-B(8)	1.812(12)	
B(7)-B(8)	1.785(13)			
C(2)-C(1)-B(4)	105.2(6)	C(1)-C(2)-B(7)	116.7(6)	
B(7) - Pd(3) - P(19)	154.5(2)	B(8) - Pd(3) - P(19)	110.8(2)	
B(7)-Pd(3)-P(28)	97.1(2)	B(8) - Pd(3) - P(28)	133.1(2)	
P(19) - Pd(3) - P(28)	94.96(8)	P(19)-Pd(3)-B(4)	96.1(2)	
P(28) - Pd(3) - B(4)	167.6(2)	P(19) - Pd(3) - C(2)	153.9(2)	
P(28) - Pd(3) - C(2)	100.9(2)	P(19) - Pd(3) - C(1)	119.7(2)	
P(28) - Pd(3) - C(1)	127.2(2)	C(1)-B(4)-B(8)	110.0(6)	
C(2)-B(7)-B(8)	105.3(6)	B(7)-B(8)-B(4)	101.8(6)	

pounds previously studied, the structure exhibits a slip distortion with the palladium atom moving relative to the C_2B_3 face.

The crystal structures of the cation **6** and neutral **7** demonstrate that the metallocarborane cages in both species have very similar dimensions. Thus, the average B-Pd distance is almost identical in the two compounds (2.286-2.287 Å), and the slip distortion parameters are also very similar (0.33 Å in **6**, 0.31 Å in **7**). The previously defined parameters which define the extent to which the C₂B₃ face is folded are also very similar: **6**, $\theta = 4.4^\circ$, $\phi = 6.1^\circ$; $\chi = 19.6^\circ$; **7**, $\theta = 2.7^\circ$, $\phi = 5.4^\circ$, $\chi = 16.8^\circ$.

The thiophenyl ligand in the carborane cage is essentially unaffected by the change from 6 to 7, and the average Pd-P distance is nearly identical in the two compounds, as are the P-Pd-P angle and the angles subtended by the Ph and two methyl groups at P.

In **6**, the cage boron–PMe₂Ph distance of 1.93(1)Å falls within the range of 1.91–1.97Å previously reported for compounds of this type. The average Pd–B distance of 2.29Å is almost identical to that in the similar 11-vertex *nido*-TeB₁₀H₉ clusters such as [2-(CO)-2-(PPh₃)-*closo*-2,1-PdTeB₁₀H₉(PPh₃)][BF₄] [8].

3.2. Summary

The reactions of $Pd(PMe_2Ph)_2Cl_2$ with $Tl_2[7-(RC_4H_2S)-7,8-nido-C_2B_9H_{10}]$ (R = Me or H) have led to the isolation of the neutral icosahedral metallocarboranes, **5** and **7**, in good yields, and as minor products the salts **6** and **8**, which resulted from the replacement of a cage hydrogen by the phosphine. The salts **6** and **8** obtained in this manner were unexpected, but they are not without precedent. Phosphine-substituted metalloborane cages have been noted in the icosahedral nickel compound [*closo*-3-(μ -CO)-8-PPh_3-3,1,2-NiC_2B_9H_{10}]_2 [9], and tellurium-substituted cage compounds [2-(CO)-2-(PPh_3)-*closo*-2,1-PdTeB_{10}H_9(PPh_3)][BF_4] [8], [2-

 $(O_2CMe)-2,11-(PPh_3)_2-closo-2,1-PdTeB_{10}H_9$ [10] and $[2,2-(PMe_3)_2-7-PPh_3-closo-2,1-PdTeB_{10}H_9]I[11]$. Other examples have been reported for the arsenic-substituted cage $[3-Cl-3,8-(PPh_3)_2-closo-3,1,2-PdAs_2B_9H_8]$ [12] and larger cages such as $[(PMe_2Ph)]{PtB_{16}H_{18}}$ -(PMe₂Ph)] [13]. Examples of the smaller metalloboranes such as $1-Br-1,5-(PPh_3)_2-1,2,3-Ni(Et_2C_2B_4H_3)$ [14] which contain a PPh₃ group on the ligand have been described. Grimes and coworkers [14], and also Hawthorne and coworkers [9] have argued in the case of the nickel compounds that they are formed by initial ligand dissociation from the metal atom, followed by phosphine attack on a B-H vertex. These workers synthesised their compounds in relatively high yields by heating the Ni–PPh₃ precursors. In the synthesis of 6and 8, the cage-substituted phosphines were formed during the syntheses of the M-PPh₂Me 'precursor' compounds in very low yield. Heating of 5 and 7 did not give the rearranged products in significant yields and only thermal decomposition products were observed.

Acknowledgements

We would like to thank BP plc for endowing DMPM's Chair and the EPSRC for financial support to DMM.

References

- D.R. Baghurst, R.C.B. Copley, H. Fleisher, D.M.P. Mingos, G.O. Kyd, L.J. Yellowlees, A.J. Welch, T.R. Spalding and D. O'Connell, J. Organomet. Chem., 44 (1993) C14.
- [2] G.O. Kyd, L.J. Yellowlees and A.J. Welch, J. Chem. Soc. Dalton Trans., (1994) 3129.
- [3] K.A. Fallis, D.F. Mullica, E.L. Sappenfield and F.G.A. Stone, *Inorg. Chem.*, 33 (1994) 4927.
- [4] (a) A.J. Beny, S.N. Dhawan, J. Kagan and S. Sundlass, J. Org. Chem., 47 (1982) 2201. (b) E.J. Corey and P.L. Fuchs, Tetrahedron Lett., 36 (1972) 3769.

- [5] Y.-K. Yan, D.M.P. Mingos, M. Kurmoo, W.-S. Li, I.J. Scowen, M. McPartlin, A.T. Coomber and R.H. Friend, J. Chem. Soc. Dalton Trans., (1995) 2851.
- [6] SHELXTL PC Version 5.03, 1994 (Siemens Analytical X-Ray Instruments Inc., Madison, WI).
- [7] H.D. Smith, Jr. and M.F. Hawthorne, *Inorg. Chem.*, 33 (1974) 2312.
- [8] J.P. Sheeham, T.R. Spalding, G. Ferguson, J.F. Gallagher, B. Kaitner and J.D. Kennedy, J. Chein. Soc. Dalton Trans., (1993) 35.
- [9] R.E. King, III, S.B. Miller, C.B. Knobler and M.F. Hawthorne, *Inorg. Chem.*, 22 (1983) 3548.
- [10] G. Ferguson, J.F. Gallagher, M. McGrath, J.P. Sheehan, T.R. Spalding and J.D. Kennedy, J. Chem. Soc. Dalton Trans., (1993) 27.
- [11] G. Ferguson, J.F. Gallagher, J.P. Sheeham, T.R. Spalding, J.D. Kennedy and R. Marcias, J. Chem. Soc. Dalton Trans., (1993) 31.
- [12] M. McGrath, T.R. Spalding, X.L.R. Fontaine, J.D. Kennedy and M. Thornton-Pett, J. Chem. Soc. Dalton Trans., (1991) 3223.
- [13] M.A. Beckett, J.E. Crook, N.G. Greenwood, J.D. Kennedy and W.S. McDonald, J. Chem. Soc. Chem. Commun., (1982) 552.
- [14] H.A. Boyter, Jr., R.G. Swisher, E. Sinn and R.N. Grimes, *Inorg. Chem.*, 24 (1985) 3810.